2,317 research outputs found

    Minimum-fuel Attitude Control of a Rigid Body in Orbit by an Extended Method of Steepest-descent

    Get PDF
    Minimum fuel control of spacecraft in orbit using extended method of steepest descen

    Empirically modelled Pc3 activity based on solar wind parameters

    Get PDF
    It is known that under certain solar wind (SW)/interplanetary magnetic field (IMF) conditions (e.g. high SW speed, low cone angle) the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock). Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through upstream waves

    Fine-Structure FeII* Emission and Resonant MgII Emission in z = 1 Star-Forming Galaxies

    Full text link
    We present a study of the prevalence, strength, and kinematics of ultraviolet FeII and MgII emission lines in 212 star-forming galaxies at z = 1 selected from the DEEP2 survey. We find FeII* emission in composite spectra assembled on the basis of different galaxy properties, indicating that FeII* emission is prevalent at z = 1. In these composites, FeII* emission is observed at roughly the systemic velocity. At z = 1, we find that the strength of FeII* emission is most strongly modulated by dust attenuation, and is additionally correlated with redshift, star-formation rate, and [OII] equivalent width, such that systems at higher redshifts with lower dust levels, lower star-formation rates, and larger [OII] equivalent widths show stronger FeII* emission. We detect MgII emission in at least 15% of the individual spectra and we find that objects showing stronger MgII emission have higher specific star-formation rates, smaller [OII] linewidths, larger [OII] equivalent widths, lower dust attenuations, and lower stellar masses than the sample as a whole. MgII emission strength exhibits the strongest correlation with specific star-formation rate, although we find evidence that dust attenuation and stellar mass also play roles in the regulation of MgII emission. Future integral field unit observations of the spatial extent of FeII* and MgII emission in galaxies with high specific star-formation rates, low dust attenuations, and low stellar masses will be important for probing the morphology of circumgalactic gas.Comment: 29 pages, 22 figures, 2 tables; accepted to Ap

    Empirically modelled Pc3 activity based on solar wind parameters

    Get PDF
    It is known that under certain solar wind (SW)/interplanetary magnetic field (IMF) conditions (e.g. high SW speed, low cone angle) the occurrence of ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate that in the event of anomalously low SW particle density, Pc3 activity is extremely low regardless of otherwise favourable SW speed and cone angle. We re-investigate the SW control of Pc3 pulsation activity through a statistical analysis and two empirical models with emphasis on the influence of SW density on Pc3 activity. We utilise SW and IMF measurements from the OMNI project and ground-based magnetometer measurements from the MM100 array to relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple linear regression and artificial neural network models are used in iterative processes in order to identify sets of SW-based input parameters, which optimally reproduce a set of Pc3 activity data. The inclusion of SW density in the parameter set significantly improves the models. Not only the density itself, but other density related parameters, such as the dynamic pressure of the SW, or the standoff distance of the magnetopause work equally well in the model. The disappearance of Pc3s during low-density events can have at least four reasons according to the existing upstream wave theory: 1. Pausing the ion-cyclotron resonance that generates the upstream ultra low frequency waves in the absence of protons, 2. Weakening of the bow shock that implies less efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not able to sweep back the waves propagating upstream with the Alfvén-speed, and 4. The increase of the standoff distance of the magnetopause (and of the bow shock). Although the models cannot account for the lack of Pc3s during intervals when the SW density is extremely low, the resulting sets of optimal model inputs support the generation of mid latitude Pc3 activity predominantly through upstream waves

    Quantified HI Morphology III: Merger Visibility Times from HI in Galaxy Simulations

    Get PDF
    Major mergers of disk galaxies are thought to be a substantial driver in galaxy evolution. To trace the fraction and the rate galaxies are in mergers over cosmic times, several observational techniques, including morphological selection criteria, have been developed over the last decade. We apply this morphological selection of mergers to 21 cm radio emission line (HI) column density images of spiral galaxies in nearby surveys. In this paper, we investigate how long a 1:1 merger is visible in HI from N-body simulations. We evaluate the merger visibility times for selection criteria based on four parameters: Concentration, Asymmetry, M20, and the Gini parameter of second order moment of the flux distribution (GM). Of three selection criteria used in the literature, one based on Concentration and M20 works well for the HI perspective with a merger time scale of 0.4 Gyr. Of the three selection criteria defined in our previous paper, the GM performs well and cleanly selects mergers for 0.69 Gyr. The other two criteria (A-M20 and C-M20), select isolated disks as well, but perform best for face-on, gas-rich disks (T(merger) ~ 1 Gyr). The different visibility scales can be combined with the selected fractions of galaxies in any large HI survey to obtain merger rates in the nearby Universe. All-sky surveys such as WALLABY with ASKAP and the Medium Deep Survey with the APETIF instrument on Westerbork are set to revolutionize our perspective on neutral hydrogen and will provide an accurate measure of the merger fraction and rate of the present epoch.Comment: 12 pages, 6 figures, 4 tables, accepted by MNRAS, appendix not include

    Subchondral bone of the human knee joint in aging and osteoarthritis

    Get PDF
    AbstractObjective Although most research investigating the pathogenesis of osteoarthritis (OA) has focused on cartilage, it has been suggested that the subchondral bone (SCB) plays an important role in the development of OA. The relationships between aging, severity of OA change and the SCB thickness and density in the human knee joint specimens from a wide range of ages were examined.Methods One hundred forty knee joints from 72 individuals (25 females, 45 males and 2 unknowns; average age 54.8 years, range 17 to 91 years) were obtained. The surface of the articular cartilage of both the femur and tibia was evaluated for gross morphological changes with a 4-point grading scale. The lateral and medial femoral condyles were cut along a sagittal plane and the tibia along a coronal plane to make bone and cartilage strip specimens. The strips were X-rayed onto mammography film and then scanned into a computer for assessment of SCB thickness and density using image analysis software.Results Medial tibial SCB thickness was significantly lower among the elderly (age>69 years) than among the young (age<40) or the middle-aged (40 to 69) (P< 0.001 via ANOVA). Lateral tibial SCB thickness also showed the same trend of decreasing thickness with increasing age, but differences between age groups were not statistically significant. Tibial SCB thicknesses were significantly lower in arthritic grades compared to normal grades (P=0.008 in lateral and 0.017 in medial via ANOVA); in contrast, no significant differences between normal and arthritic were found in femoral SCB thicknesses. The arthritic group tended to have lower SCB densities than the normal group, but this was statistically significant in only the lateral femoral condyle.Conclusions The results obtained in the present study are not consistent with generally accepted notions of the relationship between subchondral bone thickness or density and OA. Subchondral bone changes are not etiologic for OA but, more likely, are secondary to loss of articular cartilage which precedes the appearance of subchondral sclerosis. Copyright 2002 Published by Elsevier Science Ltd on behalf of OsteoArthritis Research Society International

    The Star-Forming Dwarf Galaxy Populations of two z ~ 0.4 Clusters: MS1512.4+3647 and Abell 851

    Full text link
    We present the results of a deep narrow-band [OII] 3727 \AA emission-line search for faint (g<g < 27), star-forming galaxies in the field of the z=0.37z=0.37 MS1512.4+3647 cluster. We find no evidence for an over-density of emission-line sources relative to the field at zz \sim 0.4 (Hogg et al. 1998), and therefore conclude that the MS1512.4+3647 sample is dominated by field [OII] emission-line galaxies which lie along the \sim 180 Mpc line of sight immediately in front and behind the cluster. This is surprising, given that the previously surveyed z=0.41z=0.41 cluster Abell 851 has 3-4 times the field emission-line galaxy density (Martin et al. 2000). We find that the MS1512.4+3647 sample is deficient in galaxies with intermediate colors (1.0 <gi<< g-i < 2.0) and implied star-formation exponential decay timescales τ\tau \sim 100 Myr - 1 Gyr that dominate the Abell 851 emission-line galaxy population. Instead, the majority of [OII] emission-line galaxies surrounding the MS1512.4+3647 cluster are blue (gi1.0g-i \leq 1.0) and forming stars in bursts with τ<\tau < 100 Myr. In both samples, galaxies with the shortest star-formation timescales are preferentially among the faintest star-forming objects. Their i luminosities are consistent with young stellar populations \sim 10^8 - 10^9 \Msun, although an additional factor of ten in stellar mass could be hiding in underlying old stellar populations. We discuss the implications for the star-formation histories of dwarf galaxies in the field and rich clusters.Comment: 26 pages, including 5 tables and 13 figures; accepted for publication in the Astrophysical Journa

    Quantified HI Morphology I: Multi-Wavelengths Analysis of the THINGS Galaxies

    Get PDF
    Galaxy evolution is driven to a large extent by interactions and mergers with other galaxies and the gas in galaxies is extremely sensitive to the interactions. One method to measure such interactions uses the quantified morphology of galaxy images. Well-established parameters are Concentration, Asymmetry, Smoothness, Gini, and M20 of a galaxy image. Thus far, the application of this technique has mostly been restricted to restframe ultra-violet and optical images. However, with the new radio observatories being commissioned (MeerKAT, ASKAP, EVLA, WSRT/APERTIF, and ultimately SKA), a new window on the neutral atomic hydrogen gas (HI) morphology of a large numbers of galaxies will open up. The quantified morphology of gas disks of spirals can be an alternative indicator of the level and frequency of interaction. The HI in galaxies is typically spatially more extended and more sensitive to low-mass or weak interactions. In this paper, we explore six morphological parameters calculated over the extent of the stellar (optical) disk and the extent of the gas disk for a range of wavelengths spanning UV, Optical, Near- and Far-Infrared and 21 cm (HI) of 28 galaxies from The HI Nearby Galaxy Survey (THINGS). Though the THINGS sample is small and contains only a single ongoing interaction, it spans both non-interacting and post-interacting galaxies with a wealth of multi-wavelength data. We find that the choice of area for the computation of the morphological parameters is less of an issue than the wavelength at which they are measured. The signal of interaction is as good in the HI as in any of the other wavelengths in which morphology has been used to trace the interaction rate to date, mostly star-formation dominated ones (near- and far-ultraviolet). The Asymmetry and M20 parameters are the ones which show the most promise as tracers of interaction in 21 cm line observations.Comment: 16 pages, 11 figure, table 1, accepted by MNRAS, appendix not include
    corecore